# Cis- and trans-bis(diphenylphosphino)ethene seven-coordinate complexes of molybdenum(II) and tungsten(II). Crystal structures of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}\right.$ (cis-dppen) $]\{\mathrm{M}=\mathrm{Mo}$ or W ; dppen $=$ bis $($ diphenylphosphino) ethene $\},\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis-dppen })_{2}\right] \mathrm{I}$, $\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OR})_{3}\right\}(\right.$ cis-dppen $\left.)\right](\mathrm{M}=\mathrm{Mo}, \mathrm{R}=\mathrm{Me} ; \mathrm{M}=\mathrm{W}$, $\mathrm{R}=\mathrm{Et}$ or Ph ) 

Paul K. Baker ${ }^{\text {a,* }}$, Michael G.B. Drew ${ }^{\text {b }}$, Archie W. Johans ${ }^{\text {b }}$, Latifah Abdol Latif ${ }^{\text {a,c }}$<br>a Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, UK<br>${ }^{\mathrm{b}}$ Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK<br>${ }^{\text {c }}$ Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 29 December 1999; received in revised form 13 February 2000


#### Abstract

Equimolar quantities of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ and cis-dppen $\left\{\right.$ dppen $\left.=\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right\}$ react in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to give good yields of the crystallographically characterised complexes $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\right.$ cis-dppen $\left.)\right]$ (1 and 2). Treatment of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ with two equivalents of cis-dppen affords the crystallographically characterised cationic complex $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis-dppen })_{2}\right] \mathrm{I}(3)$. Reaction of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ with one equivalent of cis-dppen, followed by addition of an equimolar amount of $\mathrm{P}(\mathrm{OR})_{3}$ affords the mixed ligand complexes $\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OR})_{3}\right\}(\right.$ cis-dppen $\left.)\right](\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W} ; \mathrm{R}=\mathrm{Me}, \mathrm{Et}$, ${ }^{i} \mathrm{Pr},{ }^{n} \mathrm{Bu}$ or Ph$)(4-13)$. The X-ray crystal structures for $\mathrm{M}=\mathrm{Mo}, \mathrm{R}=\mathrm{Me} ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Et}$ or Ph are also determined. Treatment of equimolar quantities of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ and $\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ gave $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}\right]$, which reacted in situ with half an equivalent of trans-dppen to furnish the bimetallic phosphine-bridged complex $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}\right\}\right\}_{2}(\mu-\right.$ trans - dppen $\left.)\right]$ (14). © 2000 Elsevier Science S.A. All rights reserved.


Keywords: Cis- and trans-bis(diphenylphosphino)ethene; Seven-coordinate; Molybdenum(II); Tungsten(II); Crystal structures

## 1. Introduction

Since the first halocarbonyl donor ligand complex $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}(\right.$ diars $\left.)\right]$ was reported by Nigam and $\mathrm{Ny}-$ holm in 1957 [1], much effort has been put into investigating the synthesis [2-5], structures [6,7] and catalytic activity $[8,9]$ of seven-coordinate complexes of the type $\left[\mathrm{MX}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$. Although a large number of seven-coordinate halocarbonyl complexes of molybdenum(II) and tungsten(II) containing mono-, bi- and tridentate phosphine ligands have been reported [2-5,10-23], hitherto,

[^0]no examples containing the rotationally restricted phosphines cis- and trans-dppen $\quad\left(\right.$ dppen $=\mathrm{Ph}_{2} \mathrm{PCH}=$ $\mathrm{CHPPh}_{2}$ ) have been described. While there are numerous crystal structures containing the ligands dppe and dppm with a wide range of metals, much less attention has been given to the unsaturated ligands such as dppen. Indeed we found no crystal structures in the Cambridge Crystallographic Database containing this ligand with molybdenum or tungsten apart from the octahedral structures $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\right.$ cis-dppen $\left.)\right] \quad[24]$, $\left[\mathrm{Mo}(\mathrm{CO})_{2}(\text { cis-dppen })_{2}\right][24]$ and $\left[\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{dppe})(\right.$ cis dppen)] [25]. There has, however, been considerable interest in the analogous diarsenic bidentate ligand $\mathrm{L}_{2}$, $\left\{\mathrm{L}_{2}=\right.$ cis-2,3-bis(dimethylarsino-1,1,1,4,4,4,-hexafluoro-but-2-ene $\}$ and the structures of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right.$ -

Table 1
Physical and analytical data for cis- and trans-bis(diphenylphosphino)ethene complexes of molybdenum(II) and tungsten(II)

| Complex | Colour | Yield (\%) | Analysis (\%) \{Found (Calc.)\} |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | C | H |
| $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\right.$ cis -dppen) $]$ (1) | Reddish orange | 59 | 41.5 (41.8) | 2.7 (2.7) |
| $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(\right.$ cis - dppen) $]$ (2) | Yellow | 73 | 38.2 (37.9) | 2.5 (2.4) |
| $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis -dppen })_{2}\right] \mathrm{I}$ (3) | Yellow | 80 | 47.5 (48.2) | 3.4 (3.4) |
| $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\right.$ cis - dppen $\left.)\right]$ (4) | Yellow orange | 48 | 39.1 (40.2) | 3.4 (3.4) |
| $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right.$ (cis-dppen)] (5) | Yellow | 53 | 39.4 (36.9) | 2.7 (2.5) |
| $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}\right.$ (cis-dppen)] (6) | Yellow orange | 73 | 41.8 (42.1) | 3.8 (3.8) |
| $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}(\right.$ cis - dppen $\left.)\right]$ (7) | Yellow | 70 | 38.3 (38.7) | 3.5 (3.5) |
| $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}(\right.$ cis -dppen $\left.)\right]$ (8) | Yellow orange | 54 | 43.8 (44.0) | 4.4 (4.3) |
| $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}(\right.$ cis-dppen) $]$ (9) | Yellow | 68 | 41.0 (40.5) | 3.8 (4.0) |
| $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{O}^{n} \mathrm{Bu}\right)_{3}\right\}(\right.$ cis -dppen) $]$ (10) | Orange | 61 | 45.3 (45.5) | 4.4 (4.7) |
| $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{O}^{n} \mathrm{Bu}\right)_{3}\right\}(\right.$ cis-dppen) $]$ (11) | Yellow orange | 77 | 42.4 (42.1) | 4.4 (4.3) |
| $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}(\right.$ cis -dppen) $]$ (12) | Orange | 49 | 49.4 (49.6) | 3.7 (3.4) |
| $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}(\right.$ cis-dppen) $] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13) | Orange | 83 | 44.0 (43.9) | 3.1 (3.1) |
| $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}\right\}_{2}(\mu\right.$-trans - dppen $\left.)\right]$ (14) | Off-white | 66 | 35.5 (35.6) | 4.0 (3.8) |

$\left.\left(\mathrm{L}_{2}\right)\right][26],\left[\mathrm{WI}_{2}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right][27]$ and $\left[\mathrm{WBr}_{2}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}{ }^{-}\right.$ $\mathrm{L}_{2}$ ] [28] are all relevant to the structures reported here. In the first two structures the metal atoms have a distorted capped trigonal prism environment, but in the diphosphite, the metal has a distorted capped octahedral environment.

In 1986 [29], we described the synthesis of the highly versatile seven-coordinate complexes $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}{ }^{-}\right.$ $\left.(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$)$. These complexes are prepared by reacting the zero-valent complexes fac$\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{NCMe})_{3}\right]$ (prepared in situ) [30] with an equimolar amount of $\mathrm{I}_{2}$ at $0^{\circ} \mathrm{C}$. In this paper, we describe the reactions of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ and their phosphite derivatives with cis- and trans-dppen. The molecular structures of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\right.$ cis-dppen $\left.)\right]\{\mathrm{M}=$ Mo or W ; dppen $=$ bis(diphenylphosphino)ethene $\}$, $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis }-\mathrm{dppen})_{2}\right] \mathrm{I}, \quad\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OR})_{3}\right\}(\right.$ cisdppen)] ( $\mathrm{M}=\mathrm{Mo}, \mathrm{R}=\mathrm{Me} ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Et}$ or Ph ) are also discussed.

## 2. Results and discussion

### 2.1. Synthesis and crystal structures of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\right.$ cis-dppen)] (1 and 2)

Reaction of equimolar quantities of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}-\right.$ $\left.(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ and cis-dppen in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave the acetonitrile displaced products $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}\right.$ (cis-dppen)] ( $\mathbf{1}$ and 2 ) probably via a dissociative mechanism, since the bis(acetonitrile) complexes obey the effective atomic number rule. Complexes 1 and 2 have been characterised by elemental analysis (C, H and N) (Table 1), IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Tables 2 and 3), in selected cases by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy (Table 4), and by X-ray crystal-
lography. They are both moderately soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CHCl}_{3}$, but insoluble in hydrocarbon solvents and diethyl ether. They are stable in the solid state when stored under dinitrogen, but decompose rapidly when exposed to air in solution. The IR spectra of $\mathbf{1}$ and $\mathbf{2}$ show three carbonyl bands, which suggests there is one isomer in solution. This was confirmed by the ${ }^{1} \mathrm{H}$-NMR spectra (Table 3), and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of $\mathbf{1}$, which showed a single resonance at $\delta=54.8 \mathrm{ppm}$ which suggests the complex is fluxional at room temperature.

Suitable single crystals of $\mathbf{1}$ for X-ray crystallography were grown by cooling $\left(-17^{\circ} \mathrm{C}\right)$ a concentrated solution of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\right.$ cis-dppen $\left.)\right]$ (1) in $\mathrm{CDCl}_{3}$ in an NMR tube for 2 weeks. Suitable single crystals of the tungsten complex [ $\mathrm{WI}_{2}(\mathrm{CO})_{3}($ cis-dppen)] (2) were obtained by cooling ( $-17^{\circ} \mathrm{C}$ ) a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Table 2
IR data ${ }^{\text {a }}$ for the cis- and trans-dppen complexes of molybdenum(II) and tungsten(II)

| Complex | $v(\mathrm{CO})\left(\mathrm{cm}^{-1}\right)$ |
| :--- | :--- |
| $\mathbf{1}$ | $2066 \mathrm{~s} ; 1979 \mathrm{~s} ; 1928 \mathrm{~s}$ |
| $\mathbf{2}$ | $2022 \mathrm{~s} ; 1967 \mathrm{~s} ; 1918 \mathrm{~s}$ |
| $\mathbf{3}$ | $1933 \mathrm{~s} ; 1866 \mathrm{~s}$ |
| $\mathbf{4}$ | $1955 \mathrm{~s} ; 1872 \mathrm{~s}$ |
| $\mathbf{5}$ | $1946 \mathrm{~s} ; 1866 \mathrm{~m}$ |
| $\mathbf{6}$ | $1951 \mathrm{~s} ; 1878 \mathrm{~s}$ |
| $\mathbf{7}$ | $1944 \mathrm{~s} ; 1864 \mathrm{~s}$ |
| $\mathbf{8}$ | $1953 \mathrm{~s} ; 1876 \mathrm{~s}$ |
| $\mathbf{9}$ | $1940 \mathrm{~s} ; 1861 \mathrm{~s}$ |
| $\mathbf{1 0}$ | $1951 \mathrm{~s} ; 1880 \mathrm{~s}$ |
| $\mathbf{1 1}$ | $1932 \mathrm{~s} ; 1830 \mathrm{~s}$ |
| $\mathbf{1 2}$ | $1958 \mathrm{~s} ; 1880 \mathrm{~s}$ |
| $\mathbf{1 3}$ | $1948 \mathrm{~s} ; 1866 \mathrm{~s}$ |
| $\mathbf{1 4}$ | $2030 \mathrm{~m} ; 1972 \mathrm{~s} ; 1938 \mathrm{~s}$ |

[^1]Table 3
Proton NMR data ${ }^{\text {a }}$ for the cis- and trans-dppen complexes of molybdenum(II) and tungsten(II)

| Complex | $\delta(\mathrm{ppm}) / J(\mathrm{~Hz})$ |
| :---: | :---: |
| 1 | $\begin{aligned} & 7.8-7.3\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh} h_{2}\right) ; 3.95(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{Ph}_{2} \mathrm{CH}=\mathrm{CHPPh}_{2}\right) \end{aligned}$ |
| 2 | $\begin{aligned} & 7.8-7.2\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPP} h_{2}\right) ; 3.9(\mathrm{br}, \mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{C} H \mathrm{PPh}_{2}\right) \end{aligned}$ |
| 3 | 7.6-6.9 (m, 40H, Ph); 4.0 ( $\mathrm{s}, 4 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ ) |
| 4 | $\begin{aligned} & 7.9-7.3(\mathrm{br}, \mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) ; 4.0(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{C} H \mathrm{PPh}_{2}\right) ; 3.75\left\{\mathrm{~d}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\} \end{aligned}$ |
| 5 | 7.9-7.2 (br, m, 20H, Ph); 4.0 (br, 2H, <br> $\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) ; 3.7\left\{\mathrm{~d}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\}$ |
| 6 | 7.9-7.3 (br, m, 20H, Ph); 4.2 \{qt, 6H, $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{3}\right\} ; 3.9\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{C} H \mathrm{PPh}_{2}\right)$; $1.3\left\{\mathrm{t}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{3}\right\}$ |
| 7 | 7.9-7.2 (br, m, 20H, Ph); 4.15 \{qt, 6H, $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{3}\right\} ; 4.0\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{C} H \mathrm{PPh}_{2}\right)$; $1.4\left\{\mathrm{t}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{3}\right\}$ |
| 8 | 7.9-7.0 (br, m, 20H, Ph); 4.35 (br, 3H, $\left.\mathrm{P}\left\{\mathrm{OCH}-\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right) ; 3.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)$; 1.28 (d, 18H, $\mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}$ ) |
| 9 | 8.0-7.0 (br, m, 20H, Ph); 4.86 (br, 3H, <br> $\left.\mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right) ; 4.2$ (br, 2H, $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}$ ); <br> 1.3 (d, 18H, $\left.\mathbf{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right)$ |
| 10 | 8.0-7.1 (br, m, 20H, Ph); 4.12 \{br, qt, 6H, $\left.\mathrm{P}\left(\mathrm{OCH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3},+2 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right\}$; $1.65\left\{\mathrm{~m}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\} ; 1.4\{\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\} ; 0.95\{\mathrm{t}, 9 \mathrm{H}$, $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\}$ |
| 11 | 8.1-6.9 (br, m, 20H, Ph); 4.1 \{br, m, 6H, <br> $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}+2 \mathrm{H}, \mathrm{PhPC} H=\mathrm{CHPPh}_{2}\right\}$; <br> $1.68\left\{\mathrm{~m}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\} ; 1.45\{\mathrm{~m}, 6 \mathrm{H}$, <br> $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\} ; 0.95\{\mathrm{t}, 9 \mathrm{H}$, <br> $\left.\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right\}$ |
| 13 | $\begin{aligned} & 7.6-6.8(\mathrm{br}, \mathrm{~m}, 35 \mathrm{H}, \mathrm{Ph}) ; 5.3\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \text {; } \\ & 3.7\left(\mathrm{br}, \mathrm{~s}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \end{aligned}$ |
| 14 | 7.75-7.3 (br, m, 20H, Ph); 4.8 (br, m, 6H, $\left.\mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right) ; 3.7\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{C} H \mathrm{PPh}_{2}\right)$; $1.5\left\{\mathrm{~d}, 36 \mathrm{H}, \mathrm{P}\left\{\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right\}$ |

${ }^{\text {a }}$ Spectra recorded in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$, referenced to $\mathrm{SiMe}_{4}$. s, singlet; m , multiplet; d, doublet; qt, quintet; t , triplet; br, broad.
solution of $\mathbf{2}$ to which a few drops of diethyl ether had been added.

The molecular structures of $\mathbf{1}$ and $\mathbf{2}$ are shown in Figs. 1 and 2, together with their common atom numbering schemes. The structures of $\mathbf{1}$ and $\mathbf{2}$ are equivalent with the metal atom bonded to three carbonyl atoms, two iodine atoms and the bidentate cis-dppen ligand. The geometry of the metal coordination sphere can best be considered as a distorted capped octahedron with $\mathrm{C}(200)$ in the capping position, the other two carbonyls in the capped face together with one of the phosphorus atoms $\mathrm{P}(3)$ from the bidentate dppen ligand. The other phosphorus atom $\mathrm{P}(4)$ from this ligand, together with the two iodine atoms make up the uncapped face. The dimensions in the two structures are as expected and almost equivalent reflecting the similar radii of Mo and W. It is particularly noticeable that the
bonds to $\mathrm{P}(3)$ are ca. 0.09 A shorter than bonds to $\mathrm{P}(6)$, no doubt because of lengthening in the latter case due to the trans-effect of the carbonyl ligand. This geometry is typical of structures of the type $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(\mathrm{~L}-\mathrm{L})\right]$ ( $\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{L}-\mathrm{L}=$ bidentate ligand) and can be compared, in particular, with structures containing dppe e.g. $\left[\mathrm{MoBr}_{2}(\mathrm{CO})_{3}(\mathrm{dppe})\right][31],\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(\mathrm{dppe})\right][32]$, and $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\right.$ dppe $\left.)\right]$ [33].

### 2.2. Synthesis and crystal structure of $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cisdppen })_{2} I \mathrm{I}\right.$ (3)

Reaction of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ with two equivalents of cis-dppen in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave the cationic complex $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis-dppen })_{2}\right] \mathrm{I}(3)$ in $80 \%$ yield. The complex was fully characterised in the normal manner (see Tables 1-4). Complex 3 is slightly more soluble in chlorinated solvents, and is more stable to oxidation than $\mathbf{1}$ and $\mathbf{2}$. The infrared spectrum shows two carbonyl bands at 1933 and $1866 \mathrm{~cm}^{-1}$, which suggests the carbonyl groups are cis- to each other and this is confirmed by the X-ray crystal structure (Fig. 3). The ${ }^{31} \mathrm{P}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ shows a single resonance at $\delta=37.8, J_{\mathrm{wp}}=160.5 \mathrm{~Hz}$, which intimates the four phosphorus atoms are in the same environment and suggests the complex is fluxional at room temperature (Fig. 3).

Suitable single crystals for X-ray analysis were grown by cooling a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3 to $-17^{\circ} \mathrm{C}$, to which had been added a few drops of diethyl ether. The structure for $\mathbf{3}$ is shown in Fig. 3,

Table 4
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR data ${ }^{\text {a }}$ for selected cis- and trans-dppen complexes of molybdenum(II) and tungsten(II)

| Complex | $\delta(\mathrm{ppm}) / J(\mathrm{~Hz})$ |
| :---: | :---: |
| 1 | 54.8 (s, cis-dppen) |
| 3 | 37.8 (s, $J_{\text {W-P }}=160.5 \mathrm{~Hz}$, cis-dppen) |
| 4 | 131.9 \{dd, (br-cis, 1P, $J_{\text {P-P }}=215 \mathrm{~Hz}$-trans)$\left.P(\mathrm{OMe})_{3}\right\} ; 73.8$ \{s, br-cis-dppen); 37.5 \{dd, (br-cis, $J_{\mathrm{P}-\mathrm{P}}=215 \mathrm{~Hz}$-trans)cis-dppen $\}$ |
| 5 | $\begin{aligned} & 105.2\left\{\mathrm{dd},\left(\mathrm{br}-\text { cis, } J_{\mathrm{P}-\mathrm{P}}=210 \mathrm{~Hz} \text {-trans }\right)-P(\mathrm{OMe})_{3}\right\} ; \\ & 55.5\left\{\mathrm{~s}, \mathrm{br} \text {-cis-dppen, } J_{\mathrm{W}-\mathrm{P}}=206 \mathrm{~Hz}\right\} ; 23.0\{\mathrm{dd}, \\ & \text { (br-cis-, } \left.\left.J_{\mathrm{P}-\mathrm{P}}=210 \mathrm{~Hz} \text {-trans }\right) \text { cis-dppen }\right\} \end{aligned}$ |
| 6 | 128.5 \{dd, $\left(2 J_{\mathrm{P}-\mathrm{P}}=23 \mathrm{~Hz}\right.$-cis-dppen, $J_{\mathrm{P}-\mathrm{P}}=203 \mathrm{~Hz}-$ trans $\left.) P(\mathrm{OEt})_{3}\right\} ; 73.9\left\{\mathrm{~s}\right.$, br-cis-dppen, $J_{\mathrm{W}-\mathrm{P}}=228$ $\mathrm{Hz}\} ; 36.2\left\{\mathrm{dd},\left(J_{\mathrm{P}-\mathrm{P}}=23 \mathrm{~Hz}\right.\right.$-cis-dppen, $J_{\mathrm{P}-\mathrm{P}}=203$ Hz-trans)cis-dppen\} |
| 7 | 97.2 \{dd, (br-cis, $J_{\mathrm{P}-\mathrm{P}}=185 \mathrm{~Hz}$-trans) $\left.-P(\mathrm{OEt})_{3}\right\} ; 52.6$ $\left\{\mathrm{s}, \mathrm{br},-c i s-\mathrm{dppen}, J_{\mathrm{W}-\mathrm{P}}=180 \mathrm{~Hz}\right\} ; 20.2$ \{dd, (br-cis, $1 \mathrm{P}, J_{\mathrm{P}-\mathrm{P}}=185 \mathrm{~Hz}$-trans) cis-dppen $\}$ |
| 13 | 82.9 \{dd, $\left(2 J_{\mathrm{P}-\mathrm{P}}=27 \mathrm{~Hz}-c i s, J_{\mathrm{P}-\mathrm{P}}=231 \mathrm{~Hz}\right.$-trans $)$, $\left.P(\mathrm{OPh})_{3}\right\} ; 33.9\{\mathrm{t}$, br, -cis-dppen\}; 21.5 \{dd, $\left(2 J_{\mathrm{P}-\mathrm{P}}=27 \mathrm{~Hz}-c i s, J_{\mathrm{P}-\mathrm{P}}=231 \mathrm{~Hz}\right.$-trans $)$ cis-dppen $\}$ |
| 14 | 155.85 \{br, s, $\left.P\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\} ; 12.15$ (br, s, trans-dppen) |

[^2]

Fig. 1. ORTEP representation of 1, together with the atom numbering scheme. Ellipsoids shown at $30 \%$ probability.


Fig. 2. ORTEP representation of 2, together with the atom numbering scheme. Ellipsoids shown at $30 \%$ probability.
together with the atomic numbering scheme. Although the data for this complex are poor, they are of sufficient quality to show the basic geometry of the complex. In 3 the metal atom is seven-coordinate being bonded to two bidentate cis-dppen ligands, named A and B, two carbonyls and an iodine atom. The metal geometry is best considered as a capped octahedron, with $\mathrm{C}(100)$ in the capping position, $\mathrm{C}(200)$, two phosphorus atoms from different ligands $\mathrm{P}(3 \mathrm{~A})$ and $\mathrm{P}(3 \mathrm{~B})$ in the capped face while $\mathrm{P}(6 \mathrm{~A}), \mathrm{P}(6 \mathrm{~B})$ and the iodine atom occupy the uncapped face. The carbonyl in the capped face $\mathrm{C}(200)$ is trans to the iodine in the uncapped face. The bond lengths to the two phosphorus atoms in the capped face are significantly shorter
at 2.513(6), 2.543(7) $\AA$ than the bonds to the phosphorus atoms in the uncapped face at $2.605(6), 2.629(7) \AA$. There have been several structure determinations containing the stoichiometry $\left[\mathrm{MX}(\mathrm{CO})_{2}(\mathrm{P}-\mathrm{P})_{2}\right]^{+}, \quad(\mathrm{M}=$ Mo, W; $\mathrm{X}=$ halogen; $\mathrm{L}-\mathrm{L}=$ bidentate phosphorus ligand), and the majority of these have the capped trigonal prismatic structure with the halogen in the capping position, four phosphorus atoms in the capped face and two carbonyls in the remaining edge, e.g. for example $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { dppe })_{2}\right] \mathrm{I}[34]$. It is not clear why 3 has the capped octahedral structure but it could be due to the relative inflexibility of the unsaturated dppen ligand which necessarily forms a closely planar chelate ring.


Fig. 3. ORTEP representation of 3, together with the atom numbering scheme. Ellipsoids shown at $30 \%$ probability.

### 2.3. Synthesis and selective crystal structures of [MI $2(\mathrm{CO})_{2}\left\{P(\mathrm{OR})_{3}\right\}($ cis-dppen $\left.)\right](4-13)$

Treatment of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ with an equimolar amount of cis-dppen in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\right.$ cis-dppen $\left.)\right]$, which react in situ with one equivalent of $\mathrm{P}(\mathrm{OR})_{3}$ to eventually give the mixedligand seven-coordinate complexes $\quad\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\{\mathrm{P}-\right.$ $\left.(\mathrm{OR})_{3}\right\}$ (cis-dppen)] $\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W} ; \mathrm{R}=\mathrm{Me}, \mathrm{Et},{ }^{i} \mathrm{Pr}$, ${ }^{n} \mathrm{Bu}$ or Ph$)(4-13)$ in good yield. Complexes $\mathbf{4}-\mathbf{1 3}$ have all been fully characterised (see Tables $1-4$ ). The complex $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right.$ (cis-dppen) $] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13) was confirmed as a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate by repeated elemental analysis and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. Complexes $4-\mathbf{1 3}$ are all considerably more soluble than $\mathbf{1 - 3}$, which is almost certainly due to the solubilising properties of the phosphite ligands. Their stability is similar to complexes 1-3.

The IR spectra of $\mathbf{4}-\mathbf{1 3}$ all show, as expected, two carbonyl bands which suggests cis-carbonyls. The room temperature ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra (Table 4) of 4, 5, 6, 7 and $\mathbf{1 3}$ all have three resonances for the three different phosphorus atoms which suggests the complexes are not fluxional at room temperature on the NMR timescale. For example, complex $\mathbf{1 3}$ has resonances at $\delta=82.9 \mathrm{ppm}$ and is a doublet of doublets due to the $\mathrm{P}(\mathrm{OPh})_{3}$ coupling with both the approximately cis- and trans-phosphorus atoms of the cis-dppen ligand. The resonance at $\delta=33.9 \mathrm{ppm}$ is an unresolved triplet due to a coupling of the $\mathrm{P}(\mathrm{OPh})_{3}$ and phosphorus on the dppen ligand which are approximately trans- to each other (see Fig. 6). The other phosphorus resonance at $\delta=21.5 \mathrm{ppm}$ is as expected a doublet of doublets.

Suitable single crystals for X-ray analysis of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OR})_{3}\right\}(\right.$ cis-dppen $\left.)\right] \quad(\mathrm{M}=\mathrm{Mo}, \quad \mathrm{R}=\mathrm{Me} ;$ $\mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Et}$ or Ph$)(4,7$ and 13) were grown by cooling ( $-17^{\circ} \mathrm{C}$ ) $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}(80: 20)$ concentrated solutions of $\mathbf{4}, \mathbf{7}$ and 13, respectively. The structures of $\mathbf{4}$, 7 and $\mathbf{1 3}$ are shown in Figs. 4-6, together with their atomic numbering schemes. In 4, 7 and 13, the metal atom is also seven-coordinate, but this time the complex is neutral with the metal bonded to two iodide


Fig. 4. ORTEP representation of $\mathbf{4}$, together with the atom numbering scheme. Ellipsoids shown at $30 \%$ probability.


Fig. 5. ORTEP representation of 7, together with the atom numbering scheme. Ellipsoids shown at $30 \%$ probability.


Fig. 6. ORTEP representation of $\mathbf{1 3}$, together with the atom numbering scheme. Ellipsoids shown at $30 \%$ probability.
atoms, two carbonyls, a bidentate cis-dppen ligand and a monodentate phosphite ligand. In a recent paper [35], we have described nine crystal structures of complexes
of the form $\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OR})_{3}\right\}(\mathrm{L}-\mathrm{L})\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}$, $\mathrm{R}=\mathrm{Me}, \mathrm{Et},{ }^{i} \mathrm{Pr}, \mathrm{Ph} ; \mathrm{L}-\mathrm{L}=\mathrm{dppm}$ or dppe). The structures of 4, $\mathbf{7}$ and $\mathbf{1 3}$ are all very similar and, indeed,
some are isomorphous (see Section 3) to those with the dppe ligand, with the metal atom in a capped octahedral environment, with a carbonyl in the capping position, one carbonyl, one phosphorus from the phosphite ligand and one from the bidentate ligand in the capped face and the other phosphorus from the bidentate ligand, and two iodide ligands in the uncapped face.

These three structures (4, $\mathbf{7}$ and $\mathbf{1 3}$ ) show no significant structural changes as a consequence of containing the unsaturated bidentate cis-dppen ligand. One feature of these structures, and the nine described previously [35], is that neither the change of metal, nor the identity of the alkyl group R in the phosphite has any systematic difference on the stereochemistry around the metal atom.

### 2.4. Synthesis of $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}\right\}_{2}-\right.$ ( $\mu$-trans-dppen)] (14)

Reaction of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right]$ with an equimolar amount of $\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gives $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})\left\{\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}\right\}\right]$, which reacts in situ with half an equivalent of trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ to eventually give the phosphine-bridged bimetallic complex $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}\right\}\right\}_{2}(\right.$ trans -dppen$\left.)\right]$ (14). Complex 14 was characterised in the normal manner (see Tables 1-4), and has similar stability and solubility to complexes 4-13.

The IR spectrum of complex 14, has three carbonyl bands, which suggests that each metal centre, as expected, has an identical arrangement of ligands. This is confirmed by the ${ }^{31} \mathrm{P}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of 14, which has two resonances at $\delta=155.85$ and 12.15 ppm . The low field resonance ( 155.85 ) for the equivalent triisopropylphosphite ligands, and a higher field resonance (12.15) for the equivalent trans$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ phosphorus atoms. Several unsuccessful attempts were made to grow suitable single crystals for X-ray analysis of $\mathbf{1 4}$. However, we have recently described the preparation and X-ray crystal structure [36] of the closely related complex [ $\left\{^{2} \mathrm{MoI}_{2}\right.$ $\left.\left.(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}\right\}_{2}(\mu-\mathrm{dppb})\right]\left\{\mathrm{dppb}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right\}$, which indeed shows that the molybdenum centres are in


Fig. 7. Proposed structure of $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right\}\right\}_{2}(\mu\right.$-trans-dppen)] (14).
identical environments to each other. It seems that the most likely structure for the bimetallic complex $\mathbf{1 4}$ is the bridged structure shown in Fig. 7.

### 2.5. Conclusions

We have shown that our highly versatile seven-coordinate complexes $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ can react with cis- and trans-dppen to give a wide range of the first examples of cis- and trans $-\mathrm{Ph}_{2} \mathrm{PCH}=$ $\mathrm{CHPPh}_{2}$ seven-coordinate complexes, six of which have been structurally characterised. The structures of the seven-coordinate complexes have been compared and show a wide range of types depending on the types of ligand attached to the metal.

The six structures, all of which contain the unsaturated bidentate dppen ligand, are shown in Figs. 1-6, respectively, together with the common numbering schemes. The envelope conformation of the five-membered bidentate ring is found in all structures but there are various degrees of fold. Thus deviations of the two carbon atoms from the $\mathrm{M}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}), \mathrm{P}(3), \mathrm{P}(6)$ plane are in (1) $0.40,0.34$, (2) $0.33,0.30$, (3) $0.58,0.36$; $0.85,0.80$, (4) $0.43,0.50$, (7) $0.36,0.33$; $0.37,0.23$, (13) $0.41,0.49 \AA$. This contrasts with the dppe bidentate ligand in which the two carbon atoms are on opposite sides of the M, P, P plane.

## 3. Experimental

All reactions and work-up procedures described in this paper were carried out under an atmosphere of dry nitrogen using conventional vacuum line and Schlenk tube techniques. The solvents used $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ were dried and distilled before use. The starting materials used, $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Mo}$ and W$)$ were prepared by the published procedure [29]. The phosphines, cis- and trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ and other chemicals were purchased from commercial sources.

Elemental analyses ( $\mathrm{C}, \mathrm{H}$ and N ) were determined using a Carlo Erba Elemental Analyser MOD 1108 (using helium as the carrier gas). IR spectra were recorded on a Perkin-Elmer 1600 FTIR spectrophotometer. ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}$-NMR spectra were recorded on a Bruker AC 250 MHz NMR spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were referenced to $\mathrm{SiMe}_{4}$, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

### 3.1. Syntheses

### 3.1.1. Syntheses of $\left[\mathrm{MI}_{2}(\mathrm{CO})_{3}(\right.$ cis-dppen $\left.)\right]$ (1 and 2)

To a stirred solution of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](0.500$ $\mathrm{g}, 0.969 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added cisdppen ( $0.384 \mathrm{~g}, 0.969 \mathrm{mmol}$ ). The colour changed from dark brown to orange-red. Filtration and removal of

Table 5
Crystal data and structure refinement details for structures 1-4, 7 and 13

|  | 1 | 2 | 3 | 4 | 7 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Formula | $\begin{aligned} & \mathrm{MoI}_{2}(\mathrm{CO})_{3}- \\ & \text { (dppen) } \end{aligned}$ | $\mathrm{WI}_{2}(\mathrm{CO})_{3}-$ <br> (dppen) | $\begin{aligned} & {\left[\mathrm{WI}(\mathrm{CO})_{2^{-}}\right.} \\ & \text {(dppen) }]_{2} \mathrm{ICH}_{2} \mathrm{Cl}_{2} \end{aligned}$ | $\mathrm{MoI}_{2}(\mathrm{CO})_{2}$ (dppen)$\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \cdot \mathrm{EtOH}$ | $\begin{aligned} & \mathrm{WI}_{2}(\mathrm{CO})_{2}^{-} \\ & (\text {dppen })\left(\mathrm{P}(\mathrm{OEt})_{3}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{WI}_{2}(\mathrm{CO})_{2^{-}} \\ & (\mathrm{dppen})\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \end{aligned}$ |
| Empirical formula | $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{I}_{2} \mathrm{MoO}_{3} \mathrm{P}_{2}$ | $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{I}_{2} \mathrm{WO}_{3} \mathrm{P}_{2}$ | $\mathrm{C}_{55} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{I}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{~W}$ | $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{I}_{2} \mathrm{MoO}_{6} \mathrm{P}_{3}$ | $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{I}_{2} \mathrm{MoO}_{5} \mathrm{P}_{3}$ | $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{I}_{2} \mathrm{O}_{5} \mathrm{P}_{3} \mathrm{~W}$ |
| Formula weight (g) | 799.19 | 975.01 | 1371.35 | 972.27 | 1054.18 | 1202.33 |
| Crystal system | Orthorhombic | Orthorhombic | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
| Spacegroup | Pbca | Pbca | $P 2_{1} / \mathrm{c}$ | C2/c | $P 2_{1} / a$ | $P 2{ }_{1} / c$ |
| Unit cell dimensions |  |  |  |  |  |  |
| $a(\AA)$ | 16.91(2) | 16.91(2) | 10.608(12) | 36.73(4) | 10.292(8) | 16.270(17) |
| $b$ ( ${ }_{\text {® }}^{\text {® }}$ ) | 16.454(18) | 16.404(18) | 12.891(14) | 10.729(12) | 18.998(14) | 14.411(16) |
| $c(\AA)$ | 21.26(2) | 21.22(2) | 43.16(5) | 19.99(2) | 21.37(3) | 21.42(2) |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 90 | 90 | 90 | 69.92(1) | 90 |
| $\beta\left({ }^{\circ}\right)$ | 90 | 90 | 96.30(1) | 113.04(1) | 89.63(1) | 106.51(1) |
| $\gamma\left({ }^{\circ}\right)$ | 90 | 90 | 90 | 90 | 75.54(1) | 90 |
| Volume ( $\AA^{3}$ ) | 5915(12) | 5887(12) | 5866(11) | 7249(14) | 3765(6) | 4814(9) |
| Z | 8 | 8 | 4 | 8 | 4 | 4 |
| $D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.795 | 2.200 | 1.553 | 1.782 | 1.860 | 1.659 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 2.028 | 8.895 | 3.258 | 2.239 | 4.872 | 3.822 |
| $F(000)$ | 3096 | 3608 | 2664 | 3664 | 2016 | 2320 |
| Crystal size (mm) | $0.25 \times 0.25 \times 0.20$ | $0.20 \times 0.17 \times 0.15$ | $0.25 \times 0.25 \times 0.15$ | $0.20 \times 0.15 \times 0.15$ | $0.25 \times 0.20 \times 0.20$ | $0.25 \times 0.25 \times 0.25$ |
| $\theta$ Range for data collection ( ${ }^{\circ}$ ) | 2.65-25.92 | 2.92-26.01 | 2.24-26.13 | 2.16-26.02 | 2.61-25.96 | 2.33-26.05 |
| Index ranges | $\begin{aligned} & -20 \leq h \leq 20 \\ & 0 \leq k \leq 18 \\ & 25 \leq l \leq 25 \end{aligned}$ | $\begin{aligned} -11 & \leq h \leq 14 \\ 0 \leq k & \leq 19 \\ -18 & \leq l \leq 20 \end{aligned}$ | $\begin{aligned} & 0 \leq h \leq 11 \\ & -14 \leq k \leq 14 \\ & -53 \leq l \leq 52 \end{aligned}$ | $\begin{aligned} & 0 \leq h \leq 45 \\ & -9 \leq k \leq 9 \\ & -24 \leq l \leq 22 \end{aligned}$ | $\begin{aligned} & 0 \leq h \leq 12 \\ & -21 \leq k \leq 23 \\ & -26 \leq l \leq 26 \end{aligned}$ | $\begin{aligned} -17 & \leq h \leq 15 \\ 0 \leq k & \leq 16 \\ -24 & \leq l \leq 24 \end{aligned}$ |
| No. reflections collected | 19316 | 9655 | 13734 | 6927 | 12202 | 10266 |
| No. unique reflections $\left(R_{\mathrm{int}}\right)$ | 5409 (0.0386) | 3714 (0.0688) | 8291 (0.0356) | 4553 (0.0373) | 12202 | 5654 (0.1033) |
| Data/restraints/paramete rs | 5409/0/335 | 3714/144/335 | 8291/0/263 | 4553/0/396 | 12202/0/817 | 5654/36/420 |
| Final $R$ indices |  |  |  |  |  |  |
| [ $I>2 \sigma(I)$ ] |  |  |  |  |  |  |
| $R_{1}$ | 0.0798 | 0.1009 | 0.1255 | 0.0663 | 0.0903 | 0.1050 |
| $w R_{2}$ | 0.2324 | 0.2857 | 0.3450 | 0.2072 | 0.2113 | 0.2491 |
| $R$ Indices (all data) |  |  |  |  |  |  |
| $R_{1}$ | 0.0940 | 0.1234 | 0.1383 | 0.1020 | 0.1374 | 0.2125 |
| $w R_{2}$ | 0.2485 | 0.3131 | 0.3508 | 0.2313 | 0.2378 | 0.3032 |
| Extinction coefficient | 0.0008(3) | 0.00000(13) | 0.0026(13) | 0.00035(3) | $0.00015(11)$ | 0.0000(2) |
| Largest difference peak and hole (e $\AA^{-3}$ ) | 4.606, - 2.121 | 4.384, - 2.339 | 3.264, -2.178 | 1.414, -0.848 | 2.284, -1.613 | 3.666, -1.705 |

most of the solvent in vacuo after 24 h yielded analytically pure orange-red crystals of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\right.$ cis dppen)] (1) $(0.477 \mathrm{~g}, 59 \%)$. Single crystals of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}\right.$ (dppen)] (1), suitable for X-ray crystallography were obtained from the NMR sample (in $\mathrm{CDCl}_{3}$ ).

The tungsten analogue $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(c i s\right.$-dppen)] (2) was prepared in an exactly analogous manner to complex 1 above. However, suitable single crystals for X-ray analysis were grown by adding a few drops of $\mathrm{Et}_{2} \mathrm{O}$ to a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}\right.$ (cis-dppen)] (2), and cooling in the fridge $\left(-17^{\circ} \mathrm{C}\right)$ for 1 week. See Table 1 for physical and analytical data.

### 3.1.2. $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis-dppen })_{2}\right]$ (3)

To a stirred solution of $\left[\mathrm{WI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](0.800 \mathrm{~g}$, $1.325 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added cis-dppen
$(1.05 \mathrm{~g}, 2.65 \mathrm{mmol})$ with continuous stirring under a stream of dry $\mathrm{N}_{2}$ for 24 h . Filtration and removal of most of the solvent in vacuo yielded a yellow solid. The complex was recrystallised by redissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrating the solution and adding a few drops of $\mathrm{Et}_{2} \mathrm{O}$ to give, after cooling at $-17^{\circ} \mathrm{C}$ for 1 week, suitable single crystals for X-ray analysis of $\left[\mathrm{WI}(\mathrm{CO})_{2}(\text { cis-dppen })_{2}\right] \mathrm{I} \quad$ (3) (yield of pure product $=$ $0.94 \mathrm{~g}, 80 \%$ ).
3.1.3. $\left[\mathrm{MI}_{2}(\mathrm{CO})_{2}\left\{P(\mathrm{OR})_{3}\right\}(\right.$ cis-dppen $\left.)\right](M=\mathrm{Mo}, \mathrm{W}$; $R=M e, E t,{ }^{i} P r,{ }^{n} B u$ and $\left.P h\right)$
A typical example: to a solution of $\left[\mathrm{MoI}_{2}-\right.$ $\left.(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](0.500 \mathrm{~g}, 0.969 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\mathrm{cm}^{3}$ ) was added cis-dppen ( $0.384 \mathrm{~g}, 0.969 \mathrm{mmol}$ ) with stirring under a stream of dry $\mathrm{N}_{2}$. An immediate colour

Table 6
Molecular dimensions (distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ ) for structures 1, 2, 4, 7 and 13

|  | $\mathbf{1}(\mathrm{M}=\mathrm{Mo})$ | $\mathbf{2}(\mathrm{M}=\mathrm{W})$ |  | $\mathbf{4}(\mathrm{M}=\mathrm{Mo})$ | $\mathbf{7}(\mathrm{M}=\mathrm{W})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | a | l |  |

change from dark brown to yellowish brown was observed. After stirring for $20 \mathrm{~min}, \mathrm{P}(\mathrm{OEt})_{3}(0.161 \mathrm{~g}$, 0.969 mmol ) was added. Filtration and removal of solvent in vacuo after 1 h yielded a yellow solid, which was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : $\mathrm{Et}_{2} \mathrm{O}(80: 20)$ to afford analytically pure crystals of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}\right.$ (cisdppen)] ( 6 ) (yield $=0.686 \mathrm{~g}, 73 \%$ ).

The other molybdenum complexes were prepared in an exactly analogous manner. For the W complexes, a similar procedure was followed, but the mixture was stirred for 3 h , after addition of the $\mathrm{P}(\mathrm{OR})_{3}$ ligand, instead of for 1 h as in the Mo complexes. See Table 1 for physical and analytical data for complexes 4-13.

### 3.1.4. $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}\right)\right\}_{2}(\mu\right.$-trans-dppen $\left.)\right]$ (14)

To a solution of $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}(\mathrm{NCMe})_{2}\right](0.500 \mathrm{~g}, 0.969$ $\mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ at room temperature, under a stream of dry $\mathrm{N}_{2}$, was added $\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$ $(0.202 \mathrm{~g}, 0.969 \mathrm{mmol})$. The mixture was stirred for 1 min , after which trans-dppen ( $0.192 \mathrm{~g}, 0.484 \mathrm{mmol}$ ) was added and the solution was stirred for a further 3 h . The resulting brown solution was filtered through

Celite, the solvent reduced in vacuo to half its volume, and a few drops of $\mathrm{Et}_{2} \mathrm{O}$ was added. After cooling the $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$ (80:20) mixture to $-17^{\circ} \mathrm{C}$ for 72 h , an analytically pure off-white powder of $\left[\left\{\mathrm{MoI}_{2}(\mathrm{CO})_{3}\{\mathrm{P}-\right.\right.$ $\left.\left.\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}\right\}\right\}_{2}(\mu$-trans-dppen)] (14) (yield $=0.540 \mathrm{~g}, 66 \%)$ was isolated.

### 3.1.5. Crystallography - crystal structure determinations

Crystal data for the six compounds are given in Table 5 together with refinement details. Molecular dimensions are given in Table 6. For all compounds, data were collected with Mo- $\mathrm{K}_{\alpha}$ radiation using the MarResearch Image Plate System. The crystals were positioned at 70 mm from the Image Plate. A total of 95 frames were positioned at $2^{\circ}$ intervals with a default counting time of 2 min . However, frames for compounds 3 and $\mathbf{4}$ were measured for 5 and 15 min , respectively. Compounds $\mathbf{1}$ and 2 were isomorphous. Complex 4 was isomorphous with $\left[\mathrm{WI}_{2}(\mathrm{CO})_{2}\{\mathrm{P}-\right.$ $\left.(\mathrm{OEt})_{3}\right\}$ (dppe)] [35], but with an ethanol solvent molecule disordered over two overlapping sites, and 7
with $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}(\mathrm{dppm})\right][35]$. Data analyses were carried out with the xDS program [37]. The structures were solved using direct methods with the shelxi program [38].

In the majority of structures (1, 2, 4, 7 and 13) all non-hydrogen atoms were refined with anisotropic thermal parameters. In 3, only the W, I and P atoms were refined anisotropically and two of the phenyl rings were constrained at calculated geometry. In 13, the phenyl rings were refined anisotropically, but with thermal parameters constrained to be compatible with those of atoms in the same rings. All structures were corrected for absorption using empirical methods [39]. The structures were then refined on $F^{2}$ using shelxl [40]. All calculations were carried out on a Silicon Graphics R4000 Workstation at the University of Reading.

## 4. Supplementary material

For complexes 1-4, 7 and 13, tables of remaining molecular dimensions not included in the paper, anisotropic and isotropic thermal parameters, and hydrogen coordinates are available. The data have been lodged with the Cambridge Crystallographic Database, CCDC nos. 135506 to 135511 inclusive. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: + 44-1223-336033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

## Acknowledgements

L.A.L. thanks the British Council for providing her with a Research Attachment Award (British Chevening Award) and the University of Malaya for other financial support and leave. We thank the EPSRC and the University of Reading for funds for the Image Plate System.

## References

[1] H.L. Nigam, R.S. Nyholm, Proc. Chem. Soc. (1957) 321.
[2] M.W. Anker, R. Colton, I.B. Tomkins, Pure Appl. Chem. 18 (1968) 104 and Refs. cited therein.
[3] R. Colton, Coord. Chem. Rev. 6 (1971) 269 and Refs. cited therein.
[4] P.K. Baker, Adv. Organomet. Chem. 40 (1996) 45 and Refs. cited therein.
[5] P.K. Baker, Chem. Soc. Rev. 27 (1998) 125 and Refs. cited therein.
[6] M.G.B. Drew, Prog. Inorg. Chem. 23 (1977) 67 and Refs. cited therein.
[7] M. Melník, P. Sharrock, Coord. Chem. Rev. 65 (1985) 49 and Refs. cited therein.
[8] L. Bencze, A. Kraut-Vass, J. Mol. Catal. 28 (1985) 369.
[9] L. Bencze, A. Kraut-Vass, L. Prókai, J. Chem. Soc. Chem. Commun. (1985) 911.
[10] J. Lewis, R. Whyman, J. Chem. Soc. (1965) 5486.
[11] M.W. Anker, R. Colton, I.B. Tomkins, Aust. J. Chem. 20 (1967) 9.
[12] J.R. Moss, B.L. Shaw, J. Chem. Soc. (A) (1970) 595.
[13] B.D. Dombek, R. Angelici, Inorg. Chem. 15 (1976) 2397.
[14] P. Umland, H. Vahrenkamp, Chem. Ber. 115 (1982) 3555.
[15] F.A. Cotton, R. Poli, Inorg. Chem. 25 (1986) 3703.
[16] P.K. Baker, S.G. Fraser, Inorg. Chim. Acta 116 (1986) L1.
[17] P.K. Baker, S.G. Fraser, Inorg. Chim. Acta 130 (1987) 61.
[18] P.K. Baker, S.G. Fraser, M.G.B. Drew, J. Chem. Soc. Dalton Trans. (1988) 2729.
[19] P.K. Baker, D.J.T. Sharp, J. Coord. Chem. 16 (1988) 389.
[20] P.K. Baker, E.M. Armstrong, Polyhedron 9 (1990) 801.
[21] P.K. Baker, M.A. Beckett, L.M. Severs, J. Organomet. Chem. 409 (1991) 213.
[22] P.K. Baker, D.J. Sherlock, Polyhedron 13 (1994) 525.
[23] S.C.N. Hsu, W.-H. Yeh, M.Y. Chaing, J. Organomet. Chem. 492 (1995) 121.
[24] C.-H. Ueng, L.-C. Leu, Acta Crystallogr. Sect. C 47 (1991) 725.
[25] C.-H. Ueng, R.-S. Lee, J. Chin. Chem. Soc. 38 (1991) 155.
[26] L.M. Mihichuk, C.L. Giesingeer, B.E. Robertson, R.J. Barton, Can. J. Chem. 65 (1987) 2634.
[27] A. Merier, J. Trotter, Can. J. Chem. 52 (1974) 3331.
[28] L. Mihichuk, M. Pizzey, B. Robertson, R. Burton, Can. J. Chem. 64 (1986) 991.
[29] P.K. Baker, S.G. Fraser, E.M. Keys, J. Organomet. Chem. 309 (1986) 319.
[30] D.P. Tate, W.R. Knipple, J.M. Augl, Inorg. Chem. 1 (1962) 433.
[31] M.G.B. Drew, J. Chem. Soc. Dalton Trans. (1972) 1329.
[32] M.G.B. Drew, C.J. Rix, J. Organomet. Chem. 102 (1975) 467.
[33] R.M. Foy, D.L. Kepert, C.L. Raston, A.H. White, J. Chem. Soc. Dalton Trans. (1980) 440.
[34] M.G.B. Drew, A.P. Wolters, Acta Crystallogr. Sect. B 33 (1977) 1977.
[35] P.K. Baker, M.G.B. Drew, U. Haas, L.A. Latif, M.M. Meehan, J. Organomet. Chem. 590 (1999) 77.
[36] P.K. Baker, L.A. Latif, M.M. Meehan, S. Zanin, M.G.B. Drew, Polyhedron 18 (1998) 257.
[37] W. Kabsch, J. Appl. Cryst. 21 (1988) 916.
[38] G.M. Sheldrick, shelx, Acta Crystallogr. Sect. A 46 (1990) 467.
[39] N. Walker, D. Stuart, Acta Crystallogr. Sect. A 39 (1983) 158.
[40] G.M. Sheldrick, SHElXL, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.


[^0]:    * Corresponding author. Fax: + 44-1248-370528.

    E-mail address: chs018@bangor.ac.uk (P.K. Baker)

[^1]:    ${ }^{\text {a }}$ Recorded as thin $\mathrm{CHCl}_{3}$ films between NaCl plates. m, medium; s, strong.

[^2]:    ${ }^{\mathrm{a}}$ Spectra recorded in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$ and referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. dd, doublet of doublets; $s$, singlet; br, broad; t , triplet.

